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Abstract. The one-dimensionalt–J model at the supersymmetric point,J = 2t , with a
magnetic impurity of arbitrary spinS is studied exactly using the Betheansatztechnique. The
impurity interacts by spin exchange with the electrons on neighbouring sites of a lattice without
destroying the integrability. The discrete Betheansatzequations diagonalizing the model, and
the thermodynamic equations are derived. The impurity free energy is obtained for arbitrary
band filling as a function of temperature and external magnetic field. The impurity can localize
up to one itinerant hole, and has in general mixed-valent properties.

1. Introduction

During the last decade the Hubbard andt–J models have received great attention in the
context of the high-Tc cuprate superconductors [1]. The Hubbard model for a strong
Coulomb repulsion reduces to thet–J model with smallJ and excluded multiple-electron
occupation of each site. On the other hand, the low-energy excitations of the three-band
Hubbard model (two oxygen p states and one copper 3d orbital per unit cell of the CuO2

plane) can also be reduced to an effective one-bandt–J model [2]. Hence, thet–J model
can be considered witht and J as independent parameters which may have comparable
values.

The one-dimensionalt–J model has been investigated by numerous methods, e.g., with
a variationalansatzfor the Luttinger liquid [3], by cluster diagonalization using the Lanczos
method [4], Monte Carlo simulations [5], and the Betheansatz[6, 7]. The one-dimensional
t–J model is only integrable forJ = ±2t . The necessary condition for the integrability is
the factorization of the many-electron scattering matrix into two-particle scattering matrices
(the Yang–Baxter triangular relation), which imposes conditions on the scattering process.
Only for J = ±2t [6, 7] are the sets of wavenumbers of the incoming and outgoing particles
identical, leading to a graded permutation superalgebra [6, 8–10], i.e. the spin of the elec-
trons and the charge holes play a similar role. The integrability of the supersymmetric model
was first stated by Lai [11] and Sutherland [6], and has subsequently been rediscovered by
other authors [7, 12, 13].

Impurities play an important role in correlated electron compounds, in particular in
one dimension, since even a small number of defects may change the properties of the
system. Unfortunately, an impurity introduced into an integrable system usually destroys
the integrability. Besides magnetic impurities in non-interacting metals (e.g. in the Kondo
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effect, the Anderson impurity model, and the multichannel Kondo problem; see references
[14–17]), there are only a few exceptions of integrable models with interactions containing
impurities. Andrei and Johannesson [18] incorporated a magnetic impurity of arbitrary
spin into the isotropic spin-1

2 Heisenberg chain. The interaction between the impurity and
the neighbouring lattice sites has to be of a special form to preserve the integrability.
These results were then extended to the Babujian–Takhtajan spin chain of spinS ′ and an
arbitrary impurity of spinS [19, 20]. The properties of isolated impurities are analogous
to those of the multichannel Kondo problem, i.e. the underscreened, spin-compensated, and
overscreened situations have to be distinguished [17, 20]. It has been argued [21] that these
low-temperature properties of the impurity correspond to non-generic fixed points. The
peculiarities, however, do not arise from integrability [22]. Other authors [23] proposed
different models involving non-magnetic impurities, which do not introduce backward
scattering.

Interactions among the conduction electrons of the host are particularly important in
one dimension, where the properties change from those of a normal Fermi liquid to those
of a Luttinger liquid [24]. In reference [25] it was shown, using Abelian bosonization and
renormalization-group calculations, that for Luttinger liquids with magnetic impurity the
Kondo temperature depends on the exchange coupling in a power-law fashion, but if the
coupling is sufficiently strong, there is a crossover to the usual exponential dependence.
Using the poor man’s scaling method, it was argued in [26] that in Luttinger liquids at low
temperatures the impurity spin is screened completely (forS = 1

2), like in the Kondo effect
for an ordinary Fermi liquid, and that the exchange coupling with the impurity flows to the
strong-coupling regime for both antiferromagnetic and ferromagnetic interactions. Recently,
in reference [27], it was shown using non-Abelian bosonization and boundary conformal
field theory that the Kondo interaction corresponds to equal forward and backward scattering,
and that there are two types of scaling fixed point: either a local Fermi liquid, or a non-Fermi
liquid displaying critical behaviour.

In this paper we consider a magnetic impurity embedded into the supersymmetrict–
J model. There is more than one example of magnetic impurity that can be devised
without spoiling the integrability. In a previous contribution we presented the solution of the
supersymmetrict–J model with an undercompensated Anderson-like mixed-valent impurity
[28]. Here we consider a Kondo-like magnetic impurity embedded in the supersymmetric
t–J model. The Betheansatzequations automatically ensure the integrability of the model.
The impurity consists of a spinS on a given link, which by construction interacts only
with electrons on both neighbouring sites via spin exchange. This coupling gives rise to
underscreening of an effective spinS + 1

2 to an effective spinS. The impurity is driven by
the interactions of the host, and is hence quite different from an ordinary Kondo impurity.
The effective impurity spinS + 1

2 arises from the ‘attractive’ interactions in the hostt–J
model [7], where the ground state consists of a Dirac sea for electrons in singlet pairs. Since
in the t–J host there are both charge and spin interactions, the charge of the impurity also
interacts with thet–J host (in contrast to the case of a non-interacting host). This gives rise
to intermediate-valence behaviour of the impurity [16]. Charge and spin fluctuations of the
impurity, however, occur on different energy scales. The impurity takes one electron from
the host, hence producing a hole in the Dirac sea. This destroys one gapless singlet pair
giving rise to one energy scale which is specific to the host. The second energy scale is the
usual Kondo temperature. Close to integer valence, two fixed points play a role for the spin
degrees of freedom: (i) at lowT and small fields the impurity behaves like an asymptotically
free spinS; and (ii) if eitherT or H (or both) are large, the fixed point corresponds to the
asymptotic freedom of a spinS + 1

2. There is a smooth crossover between these regimes at
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intermediateT andH .
The rest of the paper is organized as follows. The scattering matrices and the discrete

Betheansatzequations diagonalizing the lattice gas with impurity are introduced in section 2.
The monodromy matrix and details of the diagonalization of the transfer matrix are sketched
in appendix A. In appendix B the impurity Hamiltonian is constructed for the lattice and
for the continuum limit. In section 3 we classify the solutions of the Betheansatzequations
according to the string hypothesis, and derive the thermodynamic Betheansatzequations.
The thermodynamic properties of the impurity are studied in section 4, and concluding
remarks follow in section 5.

2. Construction of the Betheansatzequations

The one-dimensionalt–J model is defined by the Hamiltonian

H0 = −t
∑
iσ

P (c
†
iσ ci+1σ + c†i+1σ ciσ )P + J

∑
i

(
Si · Si+1− 1

4
nini+1

)
(1)

wherec†iσ creates an electron of spinσ at sitei, P is a projector that excludes the multiple
occupancy of each site,Si = c†iσSσσ ′ciσ ′ are the spin-12 operators,ni =

∑
σ c
†
iσ ciσ is the

number operator for sitei, andJ is the antiferromagnetic exchange coupling. The hopping
t can be equated to 1.

Model (1) is only integrable forJ = 2t , i.e. at the supersymmetric point [6, 11]. The
scattering matrix for two electrons with wavenumbersk1 andk2 then takes the form [7]

X̂(k1, k2) = (p1− p2)Î + iP̂

p1− p2+ i
(2)

wherep = 1
2 cot(k/2), andÎ andP̂ are the identity and permutation operators, respectively.

This scattering matrix satisfies the triangular Yang–Baxter relation, which, together with the
excluded multiple occupancy of sites, provides necessary and sufficient conditions for the
integrability of (1).

We introduce the impurity via its scattering matrix with the itinerant electrons. If the
integrability of the supersymmetrict–J model is to be preserved, the impurity scattering
matrix Ŝ has to satisfy the triangular Yang–Baxter relation withX̂ [15, 16] (see appendix
A). As already mentioned in section 1, the impurity scattering matrix following from the
Yang–Baxter relations is not unique, i.e. more than one impurity form can be constructed
without destroying the integrability [28].

In this paper we consider the impurity scattering matrix [29]

Sσσ
′

MM ′(p − p0) = a(p − p0)
(p − p0+ i/2)δσσ ′δMM ′ + iσ̂σσ ′ ŜMM ′

p − p0+ i
(3)

where theσ̂ are the Pauli matrices,̂S the impurity spin matrices,M is the spin component
of the impurity, the unprimed (primed) indices refer to the incoming (outgoing) states,
and a(p) = [(p2 + 1)/(p2 + (S + 1

2)
2)]1/2. Here S 6= 0 is the spin of the impurity,

|M| 6 S, andp0 is a parameter controlling the impurity characteristics.
Consider nowNe itinerant electrons and the impurity in a box ofNa sites. Periodic

boundary conditions imposed on a given electron require it to interchange position with all
of the other electrons, each interchange involving a two-particle scattering matrix. Hence,
when the particle is back at the original position, we obtain an operator consisting of a
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product ofNe − 1 electron–electron scattering matrices,X̂, and one scattering matrix due
to the impurity,Ŝ:

T̂j (pj ) = X̂−1
j,j+1(pj − pj+1) · · · X̂−1

j,Ne
(pj − pNe)

× Ŝ−1
j (pj − p0)X̂

−1
j,1(pj − p1) · · · X̂−1

j,j−1(pj − pj−1). (4)

One such operator (the transfer matrix) is obtained for each electron, i.e.j = 1, . . . , Ne,
and allNe operators are to be diagonalized simultaneously (see appendix A). The corres-
ponding eigenvalues are exp(ikjNa) = [(pj + i/2)/(pj − i/2)]Na . Due to the spin degree of
freedom, the diagonalization of the operatorsT̂j leads to a new eigenvalue problem that can
be solved in terms of a second (nested) Betheansatz. Each Betheansatzgives rise to a set
of rapidities,{pj }, j = 1, . . . , Ne, for the charges, and a further set,{3α}, α = 1, . . . ,M∗,
for the spins (M∗ is the number of down-spin electrons), which satisfy the discrete Bethe
ansatzequations for thet–J model with impurity:

exp{−i arctan[2(pj − p0)/(2S + 1)] + i arctan(pj − p0)}
[
pj + i/2

pj − i/2

]Na
=

M∗∏
β=1

pj −3β + i/2

pj −3β − i/2
j = 1, . . . , Ne (5)

3α − p0+ iS

3α − p0− iS

Ne∏
j=1

3α − pj + i/2

3α − pj − i/2
= −

M∗∏
β=1

3α −3β + i

3α −3β − i
β = 1, . . . ,M∗. (6)

In each equation the first factor on the left-hand side arises from the impurity. The remaining
factors correspond to the supersymmetrict–J model without impurity. The energy of the
system is given by [7]

E = −2Ne + 2
Ne∑
j=1

1/2

p2
j + 1/4

. (7)

If S = 1
2, equations (5) and (6) correspond to the Betheansatzequations of the standard

supersymmetrict–J model for Ne + 1 particles andM∗ flipped spins. The additional
charge has rapidityp0, which is not determined selfconsistently. Hence, the ‘additional
electron’ is distinguishable from the remaining ones.

If we suppress the charge fluctuations in equations (5) and (6), i.e. equatingpj to zero
for all j on the right-hand side of (5) and on the left-hand side of (6), and withp0 = 1/J
(J is the Kondo coupling), we essentially (there are two partial waves) recover the Bethe
ansatzequations of the standard Kondo problem. The Hamiltonian describing the interaction
of the impurity with the itinerant electrons is derived in appendix B.

3. Thermodynamic Betheansatzequations

Each eigenstate of the system is specified by two sets of rapidities,{pj } and {3α}, for
the charges and the spins, respectively, which satisfy the discrete Betheansatzequations,
(5) and (6). The structure of the solutions of the Betheansatzequations is determined by
the host (the supersymmetrict–J model) and can be taken over from reference [7]. The
classification of states is also similar to that of the fermion gas with an attractiveδ-function
potential [30, 31], and thej = 1/2 Anderson impurity in theU →∞ limit [32]. In fact,
the t–J host also corresponds to an infinite on-site repulsion of electrons (excluded multiple
occupation of each site).
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In the thermodynamic limit the rapidities are classified according to (i)Ne − 2M∗′ real
charge rapidities, corresponding to unpaired propagating electrons, (ii) 2M∗′ complex charge
rapidities, representing bound or spin-paired electron states, of the formp±α = 3′α ± i/2,
where3′α is a real spin rapidity,α = 1, . . . ,M∗′, and (iii) M∗n strings of complex spin
rapidities (bound spin states) of lengthn− 1, n = 1, . . . ,∞, of the form

3µ
α,n = 3α,n + iµ/2 µ = −(n− 1),−(n− 3), . . . , n− 1 (8)

where again3α,n is a real parameter. The integersM∗′ andM∗n satisfy the relation

M∗′ +
∞∑
n=1

nM∗n = M∗.

Distribution functions for the rapidities and their ‘holes’ are now introduced for each class,
i.e.ρ(p) andρh(p) for the real charge rapidities,σ ′(3) andσ ′h(3) for the spin-paired states,
andσn(3) andσn,h(3) for the strings ofn spin rapidities. Inserting the above solutions into
the discrete Betheansatzequations, we obtain after Fourier transforming and some algebra
[7]

σ̂m+1,h(ω)+ σ̂m−1,h(ω)+ δm,2Seip0ω/(2πNa)

= 2 cosh

(
1

2
ω

)
[σ̂m(ω)+ σ̂m,h(ω)] m > 1 (9)

σ̂1,h(ω)+ σ̂ ′h(ω)+ 1= 2 cosh

(
1

2
ω

)
[ρ̂(ω)+ ρ̂h(ω)] (10)

e−(1/2)|ω|σ̂ ′h(ω)+ e−(1/2)|ω| + eip0ω[e−(S+1/2)|ω| − e−|ω| − e−(S−1/2)|ω| − 1]/(4πNa)

= 2 cosh

(
1

2
ω

)
[σ̂ ′(ω)+ σ̂ ′h(ω)] + ρ̂(ω) (11)

whereρ̂(ω) ≡ σ̂0,h(ω). The terms proportional to 1/Na are due to the impurity scattering
matrix. The energy, the total number of electrons, and the magnetization are given by [7]

E/Na = −2Ne/Na + 2π
∫

dp ρ(p)a1(p)+ 2π
∫

d3 σ ′(3)a2(3)

Ne/Na =
∫

dp ρ(p)+ 2
∫

d3 σ ′(3)

Sz/Na = S/Na + 1

2

∫
dp ρ(p)−

∞∑
n=1

n

∫
d3 σn(3)

(12)

wherean(x) = (1/π)[2n/(4x2+ n2)].
The above equations are valid quite generally for all states. We now restrict ourselves

to thermal equilibrium by minimizing the free-energy functional with respect to the density
functions, subject to (9)–(11) and the constraints of constant number of electrons and
constant magnetization (the corresponding Lagrange multipliers are the chemical potential
µ and the magnetic fieldH ). We introduce an energy function for each class of rapidities,
defined as

ρh/ρ = exp(ε(p)/T ) σ ′h/σ
′ = exp(ψ(3)/T )

σn,h/σn = exp(ϕn(3)/T ) = ηn(3) ϕ0 ≡ −ε
(13)

which satisfy the following integral equations [7]:

ε(p) = 2πG0(p)+ TG0 ? ln[(1+ eψ/T )/(1+ η1)] (14)

ψ(3) = −2+ 2πG1(3)− µ+ TG1 ? ln(1+ eψ/T )+ TG0 ? ln(1+ e−ε/T ) (15)

ϕn(3) = TG0 ? ln[(1+ ηn+1)(1+ ηn−1)] (16)
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where the last equation holds forn = 1, . . . ,∞, the star denotes convolution,η0 = e−ε/T ,
andGl(3) is the Fourier transform of exp(−l|ω|/2)/(2 cosh(ω/2)). The field dependence
is introduced via the field boundary condition:

lim
n→∞

1

n
ϕn(3) = H. (17)

The equilibrium free energy of the system is the sum of the free energies of the
supersymmetrict–J model and the impurity:

FtJ /Na = −T
∫

dp a1(p) ln(1+ e−ε(p)/T )− T
∫

d3 a2(3) ln(1+ e−ψ(3)/T )

= − ψ(0)− 2µ− 2 (18)

Fimp = −T
2

∫
d3 [G2S+1(3− p0)−G2(3− p0)−G2S−1(3− p0)−G0(3− p0)]

× ln(1+ eψ(3)/T )− T
∫

d3 G0(3− p0) ln(1+ eϕ2S (3)/T ) (19)

where the impurity free energy is defined up to a temperature-independent function ofp0.
If the temperature is much larger than the bandwidth, i.e.T � 2, we can neglect the

independent (driving) terms in equations (14)–(16), so the potentialsε, ψ , andϕn do not
depend onp and3, and satisfy [7, 30]

1+ ηn =
{
sinh

[
(nH/2T )+ x]/ sinh(H/2T )

}2

e2ε/T = (1+ eψ/T )/(1+ η1)

e2(ψ+µ)/T = (1+ e−ε/T )(1+ eψ/T )

(20)

whereη0 = e−ε/T and

e2x = e2H/T [1+ e−(H+2µ)/2T ]/[1+ e(H−2µ)/2T ]. (21)

The free energy of the host corresponds to the three degrees of freedom per site of a hole
and a spin1

2, FtJ /Na = −T ln[1 + 2eµ/T cosh(H/2T )], whereµ is measured from the
bottom of the band. The free energy of the impurity is discussed in section 4.

The ground-state integral equations are obtained from equations (14)–(16) in the limit
T → 0. The energy potentialsϕn are positive over the entire3 range for alln > 1, so
string states are not occupied asT → 0. Only theε-band (unpaired electrons) and the
ψ-band (spin-paired electrons) are populated. The zeros of the potentials define the Fermi
points,ε(±B) = 0 andψ(±Q) = 0. Both integration limits,B andQ, are functions ofµ
andH . In the limit T → 0, equations (14) and (15) yield [7]

ε(p) = −2+ 2πa1(p)− 1

2
H − µ−

∫
|3|>Q

d3 a1(p −3)ψ(3) (22)

ψ(3) = −4+ 2πa2(3)− 2µ−
∫
|3′|>Q

d3′ a2(3−3′)ψ(3′)

−
∫
|p|>B

dp a1(3− p)ε(p). (23)

Similar equations determine the density functions. The energy, the number of electrons,
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and the magnetization of the host are given by

E/Na = −2Ne/Na + 2π
∫
|p|>B

dp ρ(p)a1(p)+ 2π
∫
|3|>Q

d3 σ ′(3)a2(3)

Ne/Na =
∫
|p|>B

dp ρ(p)+ 2
∫
|3|>Q

d3 σ ′(3)

Sz/Na = S/Na + 1

2

∫
|p|>B

dp ρ(p).

(24)

In zero magnetic field we haveB = ∞, and the unpaired electron band is empty. As a
function of field,B decreases monotonically. In zero field, the number of electrons in the
system is a decreasing function of the parameterQ [7]. The ground-state properties of the
impurity are discussed in section 4.

4. Properties of the impurity

On the one hand, in the continuum limit the impurity scattering matrix, equation (3), is that of
the single-channel Kondo problem of spinS [29]. On the other hand, the impurity is driven
by the host, i.e. by the supersymmetrict–J model, through the energy potentialsψ(3) and
ϕ2S(3). Hence, some impurity properties are then expected to be different from those of
the standard Kondo problem. In particular, thet–J model correlates spins and charges, so
in contrast to the case for the ordinary Kondo problem, our impurity also couples to the
charges. The impurity then acquires some mixed-valent character, corresponding to two
magnetic configurations [33, 34]. Except for in special limits, the integral equations for
the energy potentials of thet–J model cannot be solved analytically. We therefore limit
ourselves to discussing the high-temperature limit and the ground-state properties of the
impurity.

In the high-temperature limit the leading contribution corresponds to constant energy
potentials, independent of3 andp, and the impurity free energy (19) is given by

Fimp = 1

2
T ln[(1+ eψ(p0)/T )/(1+ eϕ2S (p0)/T )].

Expressing eψ/T and eϕ2S/T using equations (20) and (21), the zero-field impurity free energy
can be written approximately as

Fimp = −T ln[(2S + 1+ f )f ] (25)

wheref = [1 + exp(g(p0) − µ)/T )]−1 is the Fermi function, andµ is measured from
the bottom of the conduction band. This expression corresponds to an impurity with two
coexisting configurations, one of spinS + 1

2, and the other of spinS. The degree of
admixture of the two configurations is a function ofp0, via the functiong(p0), which is
even inp0, and monotonically decreasing forp0 > 0, with g(p0 = ±∞) = 0. The exact
expression for the functiong(p0) is complicated, but it can be approximated by 2πG1(p0).
The properties of the impurity depend on the band filling through the chemical potential.
For a given intermediatep0, the spin-S configuration is favoured forµ → 0, i.e. for low
electron densities, while close to half-filling,µ = 2 ln(2), the configuration of spinS + 1

2
is favoured.

The field dependence of the free energy at highT is also given by equations (19),
(20), and (21). Again the exact expression is tedious, so we limit ourselves to presenting
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an approximate one, which includes the field dependence and interpolates between the two
configurations:

Fimp = −T ln{Z(S+1/2) + exp[(g(p0)− µ)/T ]ZS} (26)

whereZS = sinh[(2S + 1)H/2T ]/ sinh(H/2T ) is the partition function of a free spinS
in a magnetic field. For a fixed field, the specific heat of the impurity as a function ofT

displays a Schottky anomaly, and the zero-field susceptibility follows a Curie law [35]. The
Curie constant and the entropy under the Schottky peak depend on the valence admixture,
i.e. the parameterg(p0)− µ.

To discuss the ground-state properties of the impurity, we observe that equations (9)–
(11) are linear in the densities, and have driving terms arising from the itinerant electrons
and from the impurity. Hence, the density functions can be separated into a host and an
impurity contribution. Since the impurity is driven by the itinerant electrons, onlyρi(p) for
|p| > B andσ ′i (3) for |3| > Q are non-zero rapidity distributions in the ground state. In
the limit T → 0, the densities for the impurity satisfy

ρi,h(p)+ ρi(p)+
∫
|3|>Q

d3 a1(p −3)σ ′i (3) =
1

2
[a2S+1(p − p0)− a2(p − p0)] (27)

σ ′i,h(3)+ σ ′i (3)+
∫
|3′|>Q

d3′ a2(3−3′)σ ′i (3′)+
∫
|p|>B

dp a1(3− p)ρi(p)

= 1

2
[a2S+2(3− p0)− a2S(3− p0)− a1(3− p0)− a3(3− p0)] (28)

and the impurity energy, magnetization, and valence are given by

Eimp = 2π
∫
|p|>B

dp ρi(p)a1(p)+ 2π
∫
|3|>Q

d3 σ ′i (3)a2(3)

Mimp = S + 1

2

∫
|p|>B

dp ρi(p)

nimp =
∫
|p|>B

dp ρi(p)+ 2
∫
|3|>Q

d3 σ ′i (3).

(29)

The integral equations are coupled Fredholm ones, and differ from the single Wiener–Hopf
equation of the standard Kondo impurity [14, 15, 29]. This is the consequence of the
charges coupling to the impurity via the correlations in the host, and the fact that there are
two Fermi points (forward- and backward-moving particles). Note that the impurity density
functions are not symmetric in their argument, the asymmetry being introduced byp0 in
the driving terms. Without loss of generality we can symmetrize them by considering the
half-sum for±p0.

In the absence of a magnetic field, i.e. forB →∞, only one integral equation remains.
Analytical results can be obtained in the limits of low electron density (Q→∞) and low
hole density (Q→ 0). For largeQ, the Fredholm integral equation can be transformed into
a hierarchical sequence of Wiener–Hopf integral equations. The leading contribution to the
valence (fraction of the bound itinerant electron) of the impurity is (S > 0)

nimp = − 1

2π

Q

Q2− p2
0

(30)

where we have assumed thatQ � |p0|. On the other hand, if the electron band is filled,
Q = 0, the integral equation can be solved by Fourier transformation, and

nimp = −1+O(Q). (31)
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Hence, in this limit we introduced one localized hole into the host (one electron of the
host is localized at the impurity). Corrections for smallQ (low hole concentration) reduce
the valence of holes proportionally toQ. Hence, as a function of band filling, the valence
smoothly varies between 0 (Ne → 0) and−1 (Ne → Na). The fact that the impurity has a
negative charge density is a novel feature, not common to other impurity models. It is an
essential property of the supersymmetrict–J model, for which there is an effective attraction
that causes gapless singlet pairs. This effect appears to be reversed at high temperatures,
wherenimp grows monotonically with the electron density.

For S = 1
2, the impurity corresponds to adding one unbound electron to the system,

which produces a negative ‘driving term’ in equation (28). Thus, in this case the negative
valence of the impurity is similar to the parity effect, i.e. the difference between the
behaviours for even and odd numbers of electrons (see also equations (5) and (6)).

The ground-state magnetization is obtained following standard procedures (see reference
[16]) from equations (27) and (28). Using equation (28), we expressσ ′ as a function of the
remaining quantities and insert it into (27). We obtain a Fredholm integral equation forρ

with two kinds of driving terms, namely, independent terms depending onp0 and a term
involving σ ′h. The magnetization is then the sum of two contributions, the magnetization due
to the internal degrees of freedom of the impurity and the magnetization arising from the
valence admixture. Since the magnetic field is usually much smaller than the bandwidth, the
latter contribution is small and linear in the field, and will be neglected here. The integral
equation for the ‘Kondo’-like spin excitations is

ρi,h(p)+ ρi(p)−
∫
|p′|>B

dp′ G1(p − p′)ρi(p′) = G2S(p − p0) (32)

where we may assume thatp0 is positive and large. Equation (32) is of the Fredholm type
and can then be reduced to a hierarchical sequence of Wiener–Hopf integral equations. The
leading contribution is just (32) with the integration range restricted to positivep′ larger
thanB. The equation then depends only on the parameterp0 − B, which we parametrize
(1/π) ln(H/TK), whereTK plays the role of a ‘Kondo’ temperature. The solution of the
Wiener–Hopf equation yields [16]

Mimp = S
[

1+ 1

2
L−1− 1

4
ln(L)/L2+ · · ·

]
H � TK S 6= 0 (33)

Mimp =
(
S + 1

2

)[
1− 1

2
L−1− 1

4
ln(L)/L2+ · · ·

]
H � TK (34)

whereL = |ln(H/TK)|. Hence, in a small field the impurity has an asymptotically free
spin S, while in strong magnetic fields the effective spin isS + 1

2, weakly coupled (the
logarithms characterize asymptotic freedom) to the itinerant electrons. For intermediate
fields, the magnetization smoothly interpolates between these two limits. Corrections of
higher logarithmic order to (33) and (34) require the solution of other equations in the
hierarchical sequence of Wiener–Hopf equations, but these contributions are non-universal.

The ‘Kondo’ limit corresponds to the suppression of the charge (valence) fluctuations of
the impurity. Charge fluctuations are described by the energy potentialψ(3), so equation
(14) can be replaced by

ε(p) = εFe−π |p| − TG0 ? ln(1+ η1) (35)

where we kept only the low-lying excitations, given by large|p|, andεF is an energy scale
of the order of the band half-width. The coupled integral equations (16) and (35) are very
similar to those of the ordinary Kondo problem, except that there are two Fermi points in
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the Dirac sea of spin rapidities, in contrast to the case of the Kondo problem for free host
electrons which involves only one partial wave [14, 15]. The impurity free energy due to
spin fluctuations is given by the term of (19) involvingϕ2S . This term contains the only
p0-dependence in the problem. Assuming thatp0 is positive and large (the Kondo limit),
p0 = 1/J plays the role of the Kondo coupling. The interference of the two Fermi points
(backward scattering of spin waves) is then not very important for the impurity properties,
and can be neglected.

The magnetic susceptibility shows Kondo logarithms in both the high- and low-
temperature limits [14, 15]:

χ = (µ2/3T )

[
1− LT −1+ 1

2
ln |LT |/LT 2+ · · ·

]
(36)

whereLT = ln(TK/T ) andµ is the effective magnetic moment, which takes different forms
in the two limits, i.e.,µ2 = S(S + 1) as T → 0 andµ2 = (S + 1

2)(S + 3
2) as T → ∞.

Hence, as seen already for the ground state, the impurity spin is only partially compensated
at low T .

5. Conclusions

In this paper we have considered a magnetic impurity embedded into a one-dimensional
lattice with strongly interacting electrons. The integrable model providing the background of
itinerant electrons is the supersymmetrict–J model. The translational invariance is broken
by introducing an additional spinS, but the integrability is preserved by construction. We
introduced an impurity scattering matrix, equation (3), that obeys the triangular Yang–Baxter
relations with the scattering matrix of the supersymmetrict–J model. This, together with
the excluded multiple occupation of the lattice sites, provides the necessary and sufficient
conditions for the integrability of thet–J model with impurity. The interaction of the
itinerant electrons with the impurity is via an exchange interaction with the two neighbouring
sites of the impurity.

We derived the Betheansatzequations, diagonalizing thet–J model with impurity,
classified all of the states according to the string hypothesis, obtained the thermodynamic
equations including the free energy of the impurity, and discussed the high-temperature and
ground-state properties.

Due to the interactions among the host electrons, the impurity is in a mixed-valent
state resulting from the superposition of the spin-S and spin-(S + 1

2) configurations. This
is seen both from the high-temperature free energy of the impurity and from the ground-
state properties. The degree of admixture is a function of the parameterp0 (related to
the exchange coupling with the impurity) and the chemical potential. At highT and for
a givenp0, the fraction of localized electron at the impurity increases monotonically with
band filling. The variation of the valence with the band filling is more dramatic at low
temperatures, where its range is from 0 to−1, i.e. the impurity absorbs a fraction of an
electron and creates a hole in the Dirac sea of the host. This implies a negative impurity
charge density, a unique feature of our model. Such behaviour is due to the ‘attractive’
nature of the interactions in the host (the supersymmetrict–J model), for which electrons
paired into singlets determine the low-temperature properties of the model.

In the limit of large|p0| and for a given finite electron density at low temperatures, the
impurity can be mapped onto the single-orbital channel Kondo problem of spinS+ 1

2. This
mapping is only approximate, because of the correlations among the conduction electrons,
and the interaction between impurity and itinerant electrons not being a contact potential for
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the lattice problem. Hence, on the one hand charge fluctuations are present, and on the other
hand the impurity is scattered not only by the even-parity states (about the impurity site),
but also by the odd-parity states. Consequently, backward scattering across the spin-rapidity
Fermi surface cannot be neglected, but, as argued, it does not have a dramatic impact on
the impurity properties ifTK is much smaller than the bandwidth.

Thus, in the Kondo limit the impurity is (under)compensated, i.e. it has an effective
spin S in a small field at low temperatures. The field and/or the temperature (if it is larger
than TK ) break up the partial screening, and the effective spinS + 1

2 is recovered. The
susceptibility follows a Curie law with a temperature-dependent Curie constant. In a small
magnetic field the specific heat has two peaks: one is the Schottky peak atT ≈ H arising
from the underscreened spinS+ 1

2; and at higherT (≈TK ) the broad structure of the Kondo
resonance gives rise to the second peak [35]. At larger fields, the two energy scales are no
longer separated, and the two peaks merge into one.

It was mentioned in section 2 that the electron–impurity scattering matrix satisfying the
triangular Yang–Baxter relation is not uniquely defined. In reference [28] we considered
a different impurity embedded into the supersymmetrict–J chain. The corresponding
scattering matrix is (instead of (3))

Sσσ
′

MM ′(p − p0) = δσσ ′δMM ′ + (Mσ |M + σ)(M ′σ ′|M ′ + σ ′) i(2S + 1)

p − p0− i(2S + 1)/2
Pσσ

′
MM ′

(37)

whereP σσ
′

MM ′ = δσσ ′δMM ′ + δ−σσ ′δM ′M+2σ . The Clebsch–Gordan coefficient(Mσ |M + σ),
which is a shorthand notation for(

SM; 1

2
σ

∣∣∣∣S 1

2

(
S + 1

2

)
M + σ

)
(38)

selects the way in which the impurity interacts with the itinerant electrons. The impurity
is then capable of temporarily absorbing the spin of one conduction electron to form an
effective spinS + 1

2, i.e. it exists in two different spin configurations. Hence, the impurity
has intermediate valence already, without correlations in the host [16, 36, 37]. This impurity
is then quite different from the one considered in the present paper.
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Appendix A. The monodromy matrix and diagonalization of the transfer matrix

The two-electron scattering matrix (2) satisfies the triangular Yang–Baxter relation

X
σ1σ

′
1

σ2σ
′
2
(p1− p2)X

σ ′1σ
′′
1

σ3σ
′
3
(p1− p3)X

σ ′2σ
′′
2

σ ′3σ
′′
3
(p2− p3)

= Xσ2σ
′
2

σ3σ
′
3
(p2− p3)X

σ1σ
′
1

σ ′3σ
′′
3
(p1− p3)X

σ ′1σ
′′
1

σ ′2σ
′′
2
(p1− p2) (A1)

with the identity and permutation operators given byÎ = δσ1σ
′
1
δσ2σ

′
2

and P̂ = δσ ′1σ2δσ ′2σ1.
Unprimed (primed) spin indices refer to states before (after) scattering. Similarly, the
electron–impurity scattering matrix satisfies

X
σ1σ

′
1

σ2σ
′
2
(p1− p2)S

σ ′1σ
′′
1

MM ′(p1− p0)S
σ ′2σ

′′
2

M ′M ′′(p2− p0)

= Sσ2σ
′
2

MM ′(p2− p0)S
σ1σ

′
1

M ′M ′′(p1− p0)X
σ ′1σ

′′
1

σ ′2σ
′′
2
(p1− p2). (A2)
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Equations (A1) and (A2) are the necessary and sufficient conditions for the integrability
[15, 16].

The monodromy matrix [15, 16] is defined as

L
{σ ′1,...,σ ′Ne+1}τ ′
{σ1,...,σNe+1}τ (α;α1, . . . , αNe+1)

= Xτ ′µ1

σ ′1σ1
(α1− α)Xµ1µ2

σ ′2σ2
(α2− α) · · ·XµNe−1µNe

σ ′Ne σNe
(αNe − α)SµNe τMM ′ (αNe+1− α)

(A3)

with implicit summation over all of theµj -indices. With respect to the indicesτ and τ ′,
the monodromy matrix forms a 2× 2 matrix, which we denote aŝLτ

′
τ (α) (omitting the spin

indices and parametersαj ) or in terms of the components [15]

L̂1
1 = Â L̂1

2 = B̂ L̂2
1 = Ĉ L̂2

2 = D̂. (A4)

The trace ofL̂τ
′
τ (α) is the transfer matrix,T̂ (α) = ∑

τ L̂
τ
τ (α) = Â(α) + D̂(α). It is

straightforward to prove that transfer matrices for different values of the spectral parameter
α commute and can all be diagonalized simultaneously [15, 16].

The operatorsÂ, B̂, Ĉ and D̂ obey commutation relations which are obtained from
equations (A1) and (A2) by explicitly using the two-electron scattering matrix, equation
(2). The results are similar to those for other models [15, 16], and will not be repeated
here. The vacuum state�0 is the state of maximum spin (all electron spins point upward
and the impurity is in the stateM = S). The Ĉ-operator acts like a ‘spin-raising’ operator,
and when applied to�0 it yields zero. On the other hand,̂B has the properties of a
‘spin-lowering’ operator, so the vector

�(α′1, . . . , α
′
M∗) =

M∗∏
β=1

B̂(α′β)�0 (A5)

corresponds toM∗ flipped spins, and has a spin projection equal to1
2Ne −M∗ + S.

The Betheansatzequations are the conditions on the set of parametersα′1, . . . , α
′
M∗

under which the vector (A5) is an eigenvector ofÂ(α) + D̂(α). Applying Â(α) + D̂(α)
to �(α′1, . . . , α

′
M∗) and commutingÂ + D̂ through all theB̂-operators, two types of term

arise, namely: (i) those reproducing the vector (A5); and (ii) ‘unwanted’ terms of different
form. Hence, the vector (A5) is an eigenvector ofÂ + D̂ only if the coefficients of the
‘unwanted’ terms vanish. This leads to the following condition on the set of parameters
{α′β}:

αNe+1− αγ + i(2S + 1)/2

αNe+1− αγ − i(2S − 1)/2

Ne∏
j=1

αj − α′γ + i

αj − α′γ
= −

M∗∏
β=1

α′γ − α′β − i

α′γ − α′β + i
(A6)

for γ = 1, . . . ,M∗.
The eigenvalue of the vector (A5) applied tôA+ D̂ is then

a(αNe+1− α)αNe+1− α + i(2S + 1)/2

αNe+1− α + i

M∗∏
β=1

α − α′β + i

α − α′β

+ a(αNe+1− α)αNe+1− α − i(2S − 1)/2

αNe+1− α + i

Ne∏
j=1

αj − α
αj − α + i

M∗∏
β=1

α − α′β − i

α − α′β
.

(A7)

With αNe+1 = p0, αl = pl for l = 1, . . . , Ne, α = pj , and settingα′β = 3β + i/2 in (A6)
and (A7), we obtain the discrete Betheansatzequations for the model.
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Appendix B. The impurity Hamiltonian

By construction of the transfer matrix, the impurity spin interacts only with the two nearest-
neighbour sites. The Hamiltonian describing the interaction between the impurity and the
itinerant electrons is obtained by differentiating the logarithm of the transfer matrixT̂ (α)

with respect toα at the pointα = 0, and has the formHt−J,imp = H0+Himp, whereH0 is
given by equation (1). Here the impurity is situated at the siteNa+1. H0 can conveniently
be written in terms of Hubbard operators as [8, 10]H0 =

∑Na−1
n=1 Hn,n+1, where

Hn,n+1 = −
∑

σ,τ=±1

(Xσ,0n X
0,σ
n+1+X0,σ

n X
σ,0
n+1−Xσ,τn X

τ,σ
n+1+X0,0

n X
0,0
n+1). (B8)

For the impurity Hamiltonian we obtain

Himp = h1(S, p0)(HNa,Na+1+HNa+1,1)+ h2(S, p0)HNa,1

+ i h3(S, p0)[(HNa,Na+1+HNa+1,1),HNa,1] (B9)

where

HNa,Na+1 = −
∑
σ,M

(X
σ,0
Na
X

0,M
Na+1+X0,σ

Na
X
M,0
Na+1−Xσ,MNa XM,σNa+1+X0,0

Na
X

0,0
Na+1)

HNa+1,1 = −
∑
σ,M

(X
σ,0
Na+1X

0,M
1 +X0,σ

Na+1X
M,0
1 −Xσ,MNa+1X

M,σ
1 +X0,0

Na+1X
0,0
1 ).

(B10)

Here Xa,b = |a〉〈b| are the Hubbard operators (a, b = 0,±1 for host electrons, and
a, b = 0,−S, . . . , S, |M| 6 S for the impurity), and the square bracket in (B9) denotes
the commutator. Note that both host and impurity states are restricted to only one particle
(or hole) at each site.h1(S, p0) andh2(S, p0) are even functions ofp0, andh3(S, p0) is
an odd function ofp0. The impurity Hamiltonian breaks the parity and the time-reversal
symmetries separately, but, of course, PT is conserved. The sign of the parameterp0 is
important, in particular if finite-size effects are considered, since it gives rise to a mesoscopic
momentum.

It is instructive to study the continuum limit of the model, i.e. the limit where the lattice
constant tends to zero. We can then linearize the kinetic energy in the momentum around
the Fermi level and restrict ourselves to low-energy excitations. Assume that the two Fermi
points are given by±kFS , related to±pFS by pFS = 1

2 cot(kFS/2). Using the notation
v = [2 sin(kFS/2)]−2 for the group velocity of the electrons, we have that the scattering
matrices take the form

X̂(k1− k2) = (k1− k2)Î − iv−1P̂

k1− k2− iv−1
(B11)

Sσσ
′

MM ′(k − ε) = a(p − p0)
[(2k − 2ε − i)/2]δσσ ′δMM ′ − iv−1σ̂σσ ′ ŜMM ′

k − ε − iv−1
. (B12)

Identifying v−1 = V 2/(2S + 1), these scattering matrices are those of a mixed-valence
impurity with two magnetic configurations of spinsS andS + 1

2 hybridized via an electron
of spin 1

2 [16]. Hereε is related top0, and represents the energy difference between the
two configurations relative to the Fermi level. The two partial waves in one dimension,
i.e. forward- and backward-moving electrons, can be transformed into even- and odd-parity
states about the impurity site. Since odd-parity states do not interact with the impurity in
the continuum limit (the contact potential), they can be disregarded. Hence, actually only
even-parity states play a role in the continuum limit. Allowing for a rescaling of the length
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of the box, the continuum-limit Hamiltonian for the impurity placed at the origin can be
written as [33, 34]

Himp = ε
∑
M

|SM〉〈SM| + V
∑
σM1M

∫
dx δ(x)[c†σ (x)|S1M1〉〈SM| + |SM〉〈S1M1|cσ (x)]

(B13)

where the bra and ket denote the impurity states,S1 = S + 1
2, andM1 = M + σ is the

correspondingz-projection. The completeness condition for the impurity requires∑
M1

|S1M1〉〈S1M1| +
∑
M

|SM〉〈SM| = 1. (B14)
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